Oncohaematology

HIV-associated non-Hodgkin lymphoma

O.A. ¹Karnabeda, L.I. ²Getman, S.N. ²Antoniak, T.V. ³Roslyakova, O.V. ³Shuliga-Nedaykhlebova

¹National Medical University named after O.O. Bogomolets ²Institute of Epidemiology and Infectious Disease named after L.V. Gromashevskiy ³INNOVACIA Cancer Centre

Summary: In this article the clinical features, diagnosis and treatment of HIV-associated non-Hodgkin lymphoma are described. According to the WHO Classification (2008) most of the HIV-associated lymphoid tumors are diffuse large cell lymphoma. HIV-associated lymphomas are characterized by rapid growth of the tumor; occurrence of B symptoms in these patients is most commonly determined. Bone marrow affection is diagnosed in 25-40% of patients; gastrointestinal tract affection is diagnosed in 26% of patients. Central nervous system in involved into the tumor process in 12-57% HIV-infected patients. Patients with HIVassociated lymphoma and active immune function have a lower risk of complication; therefore, optimal and infectious an effective chemotherapy can be prescribed.

Key words: HIV-associated lymphoma, treatment, diagnosis.

Oksana Karnabeda National Medical University named after O.O. Bogomolets Department of Internal Medicine #1 17, Taras Shevchenko blvd, Kiev, 01030, Ukraine e-mail: <u>oksanakarnabeo@yahoo.com</u> telephone: +38 067 942 2901

In accordance with the new classification of tumors of lymphoid tissue (WHO 2008), HIV-associated lymphomas are distinguished as a separate sub-group named "Lymphoproliferative disease associated with immunodeficiency" [1,50]. The research results advocated that immunodeficiency virus (HIV) significantly increases the risk of chronic lymphoproliferative disorders such as non-Hodgkin lymphomas (NHL) and Hodgkin's lymphoma (HL). It is epidemiologically demonstrated that HIV-infected patients have from 60 to 200-fold growth of NHL incidence. The number of NHL in HIV patients is increasing by 5.6%

annually as compared to 0.015% in general population. The risk of NHL or primary central nervous system lymphoma in HIV-infected patients is closely associated with the quantity of CD4. A research delivered an evidence that the incidence of NHL increased from 15.5 to 253.8 per 10,000 people per year, and the primary CNS lymphoma increased from 2 to 93.9 per 10,000 people per year among patients with more than 350 cells/mcl CD4 lymphocytes compared to those with fewer than 50 cells/mcl CD4 respectively [5].

Furthermore, it was argued that patients with lower CD4 quantity level are diagnosed with primary CNS lymphoma and primary lymphoma of exudates (PLE) more frequently while in HIV-infected patients with higher CD4 quantity level Burkitt's lymphoma and Hodgkin's lymphoma (LB) are diagnosed [10,32,50,55].

In lymphoid tissue cell ontogeny, most of the HIV-associated lymphoid tumors are diffuse large B-cell lymphoma (DLBCL), including primary CNS lymphoma. Burkitt's lymphoma (BL) in HIV-associated patients is diagnosed in 30-40% cases [1]. PLE, plasma-blast lymphoma and Hodgkin's lymphoma are much less likely to be diagnosed. Other subtypes of lymphoma, such as follicular lymphoma and peripheral T-cell lymphoma, may also rarely occur in this group of patients [1,55].

Pathogenesis of HIV-associated lymphomas

Pathogenesis of HIV-associated lymphoma involves a complex interaction of biological factors, such as the chronic stimulation with antigen, co-infection of oncogenic viruses, genetic abnormalities and deregulation of cytokines [22,35,39,50].

The chronic antigenicity stimulation that is related to HIV infection may first lead to increasing of the polyclonal B-cells quantity and, furthermore, likely to stimulate the emergence of monoclonal cells [18,55].

The increase of circulating free light immunoglobulin chains that can be a marker of polyclonal B-cell activation in patients with high risk of HIV-associated lymphoma has been recently established [31]. Actual researches seek to find the free light immunoglobulin chains which may be useful for detection of HIV-infected patients with high risk of lymphoma [31].

Most often, in about 40% of HIV-associated lymphomas, oncogenic Epstein-Barr virus (EBV) is detected [1,3,50]. Nearly all cases of primary CNS lymphoma and HL have EBV. In most HIV-associated PLE, the association of two EBV oncogenic viruses and herpes virus type 8 (HHV-8), found virtually in all patients, is detected [8].

EBV is determined in 30-50% of HIV-associated BL and in 50% of plasma-blast lymphoma (Table 1) [1,3,8]. EBV-positive HIV-associated lymphoma often express latent membrane protein 1 that activates cell proliferation by NF-kB activation path and induces hyperexpression *BCL2*, thereby, blocks apoptosis of tumor B-cells stimulating their survival [17,23,46].

Table 1

Association of oncogenic viruses in patient with HIV lymphoma

Histological variant	EBV +	HHV-8
DLBCL		
Centroblastic	30%	0
Immunoblastic	80-90%	0
Plasma-blast	More than 50%	80%
Primary Lymphoma of Exudates	100%	100
Burkitt's Lymphoma	30-50%	0
Primary CNS Lymphoma	100%	0
Hodgkin's Lymphoma	80-100%	0

Acceleration of cytokines, namely IL-6, IL-10 tumor necrosis factor- β , along with frequent aberrant somatic hypermutation of immunoglobulin genes reveal a role for immune stimulation in lymphooncogenesis in HIV-infected patients [1].

Polymorphism of chemokine paths also impacts the risk of HIVassociated lymphoma. For example, with HIV infection, stromal derived cells factor 1 variant 3'A doubles and, respectively, increases risk of NHL in heterozygote and homozygote by four times [43,55].

Molecular and genetic features of HIV-associated lymphoma

The studies identified a number of genetic abnormalities in HIVassociated lymphomas. A research by Carbone (2003) demonstrated that LB is associated with the activation of MYC gene. It is diverting that about 20% of HIV-positive DLBCL also have MYC translocation [16,27]. BLC6 mutation occurs in 20% patients with HIV-associated lymphomas and centroblastic DLBCL and in 60% patients with HIV-associated lymphomas and PLE [24,25].

As a result of research, Lenz *et al* (2010) proved that the molecular profile of HIV-associated lymphoma is similar to DLBCL and LB of the HIV-negative patients [33].

Genes associated with a germinal centre of B-cell (GCB) DLBCL included germinal centre differentiation markers such as CD10 and BCL6 while genes associated with the activated B-cell (ABC) type of DLBCL contained IRF4/MUM1 [15].

Several studies have revealed that expression of *BCL2* gene was more than four times higher at ABC DLBCL than at DLBCL from GCB [2]. These results indicate that subtypes DLBCL GCB and ABC have derived from B-cells at various stages of differentiation. DLBCL with GCB arises from germinal centre of B-cells; DLBCL of ABC derives from postgerminal centre of B-cells at the stage of plasma lymphocyte differentiation.

Genetic analyses have shown that pathogenetic mechanisms at ABC and GCB DLBCL are different. DLBCL of GCB is exceptionally associated with translocation of t (14, 18) involving *BCL2* gene and immunoglobulin heavy chain gene, as well as amplification of c-rel locus of chromosome 2p. Furthermore, this lymphoma has amplification of oncogenic mir-17-92 of micro RNA cluster, deletion of tumor suppressors *PTEN* and frequent anomaly of *BLC6* gene [34,40].

Amplification of the oncogene *SPIB*, deletion of locus tumor suppressor *INK4a/ARF* and trisomy 3 are often determined at ABC DLBCL that leads to expression of abnormal *CARD11*, BCL10 and *A20*, that activates IkB kinase and NF-KB path of tumor lymphogenesis [17.34, 35.39].

Table 2 present histogenetic and genetic molecular features of lymphoma in HIV-infected patients depending on the histological origin of tumors.

Features of HIV-associated lymphomas

		Histogenetic Markers (%))	Molecular genetic markers (%)				
Histogenetic	Histology	MUM1	Syn-1	BCL-	BCL-	P53	c-	CD4 cells
origin			_	2	6		MYC	
Germinal	Burkitt's	<15	0	0	100	60	100	May be
(embryonic)	lymphoma							relatively
Centre								well-preserved
								quantity
	DLBCL-GC	<30	0	0	>75	Rarely	0-50	Variable
								quantity
Post germinal	DLBCL-ABC	100	>50	30	0	0	0-20	Usually low
Centre								quantity
	Primary CNS	>50	<60	90	<50	0	0	<50mm ³
	lymphoma							
	Primary	100	>90	0	0	0	0	Variable
	lymphoma of							quantity
	exudates							1 5
	Plasma-blast	100	100	0	0	Rarely	0	Variable
	lymphoma							quantity

Note: EBV Epstein-Barr virus; KSHV – Kaposhi's sarcoma-associated herpes virus; MUM1 – multiple myeloma-1; DLBCL - diffuse large B-cell lymphoma; GC – germinal centre; ABC – activated B-cell subtype.

Diagnosis of HIV-associated lymphomas [55]

A histological and immunohistochemical study of the material obtained by excision biopsy is the most important test for diagnostics.

In most cases, the histology of HIV-positive lymphoma is similar to those that develop in HIV-negative patients.

Histological features of HIV-associated lymphomas [1, 55]

Two histological variations are classified in HIV-associated DLBCL: centroblastic and immunoblastic. Centroblastic variant is about 25% of HIV-associated lymphomas; it is characterized by diffuse growth of large lymphoid cells with round or oval nuclei and prominent nucleoli. They often express markers of embryos follicle centre such as CD10 and BCL6; also, all tumor cells are CD20 positive, as a rule [9,50]. Immunoblastic variant of DLBCL contains more than 90% of immunoblasts and often exhibits traits of plasmacytoid differentiation [14,50,53]. This variant of DLBCL forms about 10% of all HIV-associated lymphomas. This tumor is CD10-negative, as it is a lymphoma

from post-follicular germinal centre of a lymph node. Frequently, positive expression in *MUM1/IRF4* and CD138/syndecan-1 markers is found at DLBCL immunoblastic type [9]. This tumor often has mitosis with high Ki-67/MIB-1 expression [36]. With immunoblastic lymphoma, the tumor cells may be CD20-negative due to co-expression of EBV.

Markers associated with activation, such as CD30, CD38, CD71, are often expressed at immunoblastic variant of DLBCL [10,50].

The tumor cell at PEL is a tumor of B-cell origin; however, tumor cells lacking expression of B-cell antigens, such as CD20 and CD79a. CD4, CD30, CD38, and CD138, are normally expressed and associated with KSHV/HHV-8 and EBV [30].

As a rule, with plasma-blast lymphoma, positive expression CD38, CD138 and MUM1/IRF4 antigens and also negative CD20 and CD 45 are diagnosed [53].

HIV-associated BL is divided into three separate subtypes: classic, plasmacydoid, atypical [50]. The classical type of BL is diagnosed in about 30% of all HIV-associated lymphomas. It morphologically resembles the classical BL of HIV-negative patients. Medium-size cells with abundant cytoplasm are typical for BL with plasmacytoid differentiation. It is more often observed in severe immunodeficiency. In other cases, the tumor cells have significant nuclear pleomorphism with smaller but more noticebly nucleous. In the past this type of BL was called atypical BL. All three types have very high mitotic indices with the expression of CD19, CD20, CD79a and CD10, and are negative for BCL2. EBV positive cases of BL range from 30% with classic BL and from 50% to 70% of BL cases associated with the second plasmacytoid differentiation [51]. Classic HIV-associated HL is largely represented by mixed-cell variant; EBV is detected in almost all cases of HL [51]. Notable that in the era of antiretroviral therapy a significant increase of nodular sclerosis of HL is registered due to the higher proportion of patients with high quantity of CD4 cells [6,30].

The research of gene expression is not used for the diagnosis of HIVassociated lymphoma. Although, in order to determine the origin of DLBCL, it is necessary to carry out the immunohistochemical studies using CD10, BCL6, and MUM1 [26]. In accordance with the latest diagnostic and prognostic algorithm, the additional study of GCET1 and FOXP1 markers is required [13]. Furthermore, according to the recent publications, the identification of MYC+ of tumor cells at DLBCL may be used to determine the outcome of the therapy. It is argued that MYC-positive tumors poorly respond to the therapy with R-CHOP regime [16,26]. Thus, it is advisable to perform cytogenetic or FISH research of tumors in order to identify MYC translocations and prescribe the most efficient treatment.

Clinical features of HIV-associated non-Hodgkin's lymphomas

HIV-associated lymphomas are characterized by the rapid growth of the tumor; the presence of B-symptoms is most commonly detected in such patients (unexplained fever, night sweats, unexplained weight loss by more that 10% of normal bode weight). Bone marrow affection is diagnosed in 25-40% of patients; gastrointestinal tract affection is diagnosed in 26% of patients. Involvement of CNS in the tumor process in HIV-infected patients is determined in 12-57% of patients [11,53].

The complex of laboratory-instrumental examination for determination of the tumor process spread and detection of the prognostic group of patients with HIV-associated lymphoma is substantially similar to that of HIVnegative patients.

Diagnostic and prognostic role of positron emission tomography (FDG-PET) has been proved in patients with HIV-negative aggressive lymphomas. Nowadays, the role of FDG-PET in HIV-associated lymphomas is not well understood. Previous experience in evaluating FDG-PET in HIV-associated lymphoma is limited to the light retrospective analysis and requires further study. At conducting PET in patients with HIV-associated lymphomas, it is also necessary to perform differential diagnosis between tumor lesions, nodular reactive hyperplasia, lipodystrophy and infection [19,21].

Prognostic criteria for HIV-associated lymphomas

The International Prognostic Index (IPI) is a standard prognostic evaluation criterion in HIV-negative patients with DLBCL. However, the use of IPI in HIV-associated DLBCL is controversial. Several studies have shown that it is impossible to predict progression-free and common survival using IPI in patients with HIV-associated lymphomas [28,45].

Prognostic value in HIV-infected patients has a number of CD4 positive lymphocytes. It is proved that the patients with CD4 counts less than 100 cells/mcl are under high risk of serious opportunistic infections development and death. Furthermore, as noted before, patients with severe immunosuppression are diagnosed with immunoblast subtype of DLBCL, which is more often ABC; they have worse results comparing to patients with immunocompetence, where GCB subtype is more common [21]. Although recently the studies proving that there is no association between the origin of the tumor's cells and the outcome of HIV-associated DBLCL [12,20,47].

CNS affection that has been increased in HIV-associated aggressive B-cell lymphomas also has unfavorable prognosis [1].

Treatment of HIV-associated non-Hodgkin's lymphomas

Treatment of HIV-associated lymphomas can be divided in two phases: before the antiretroviral therapy usage and after the widespread use of specific complex antiretroviral (ARV) therapy.

The results of treatment of HIV-associated lymphomas before the era of antiretroviral therapy were poor; the median of patient survival was average from 5 to 6 months and was mainly determined by the number of CD4 cells. These results were associated with the development of both hematological and non-hematological chemotherapy complications. In their study, Kaplan L.D. et al noted that high doses of cyclophosphamide correlated with poor patient survival [29]. Attempting to improve treatment outcomes and reduce the risk of infectious complications, a multicentre, randomize study was conducted; it compared the results of the therapy regime mBACOD at standard doses with reduced doses in 192 patients with HIV-associated lymphomas [29]. Table 3 shows in full answers that the survival median of comparing groups was not statistically different, whereas hematologic toxicity in the group of patients with low-dose of mBADOC regime was statistically lower. This led the authors to conclude that lower doses of chemotherapy were more preferable for HIV-associated lymphomas. However, the patients with low CD4-positive lymphocytes were involved in the study. In the era of widespread use of antiretroviral (ARV) treatment the number of patients with higher CD4 cells increased; this ultimately allows to increase the effectiveness of treatment and reduce the risk of infections at the use of standard doses of chemotherapy (Table 3) [36].

The beginning of using antiretroviral therapy about 15 years ago exerted a significant impact on the outcome of HIV-associated lymphomas with an increase of survival median; this explains the beneficence of the antiretroviral therapy on the immune system. Patients with HIVassociated lymphomas and safe immune system have lower risk of infectious complications, which allows assigning them optimally effective and full chemotherapy [10,36]. One of the studies proved that common and progression-free survival of patients with HIV-associated lymphoma was largely dependent on ARV therapy, not the intensity of doses of cytostatic therapy [37].

Table 3 presents the results of randomized trials of studying different modes of cytostatic therapy in patients with HIV-associated lymphomas.

The results of treatment of HIV-associated lymphomas in clinical trials

	Type of study,	Lymphoma type	Therapy scheme		Number	Therapy out	y outcome		
	Number of patients, n				of CD4 cells/mm ³	Complete remission, %	Progression-free survival	Overall survival	
Kaplan L.D.,	Multicentre,	Agressive NHL	m-BAC	OD+ GM-CSF	107	52	38 weeks	31 weeks	
1997 [29]	randomized, phase III (n=192)		m-BACO	OD low+ GM-CSF	100	41	56 weeks	35 weeks	
Ratner 1., 2001[44]	II (n=65)	DLBCL, immunoblastic	m-CHOP CHOP		138	30	Response median weeks	to therapy is 65	
		NHL			122	48	Response median to therapy is not reached		
Sparano J. A., 2004 [48]	II (n=98)	DLBCL, BL	didanosine		90	47	1-year - 42%, 2-year - 35%	6.8 months	
			CDE		227	44	1-year - 40%, 2-year - 38%	13.7 months	
Mounier N.,	III (n=485)	DLBCL	HIV	ACVBP	239	61	5- year - 35,54%	5- year - 41,61%	
2006 [37]			(score 0)	СНОР	239	51	5- year - 30,49%	5- year - 38,57%	
			HIV	СНОР	72	49	5- year - 16,35%	5- year - 18,37%	
			(score 1)	CHOP low	72	32	5- year - 10,29%	5- year - 15,34%	
			HIV	CHOP low	21	20	5- year - 0,16%	5- year - 2,20%	
			(score 2-3)	VS	21	5	5- year - 0%	5- year - 0,8%	

Little R. F.,	II (n=39)	DLBCL, BL, PLE	ЕРОСН	198	74	4.4- year - 73%	4.4- year - 60%
2003 [36].							
Kaplan L.D.,	III (n=150)	DLBCL, BL	R-CHOP	130	49.5	45 weeks	139 weeks
2005 [28]			СНОР	147	41.2	38 weeks	110 weeks
Boue F., 2006 [7]	II (n=61)	DLBCL, BL, immunoblastic, plasmoblastic	R-CHOP	172	35	2- year - 69%	2- year - 75%
Spina M.,	II (n=74)	DLBCL, BL,	CDE-R	161	70	2- year - 59%	2- year - 64%
2005 [49]		anaplastic large cell lymphoma, immunoblastic	CDE	227	45	2- year - 38%	2- year - 45%
Sparano J.A., 2010 [51]	II (n=101)	DLBCL, BL	R-DAEPOCH	181	73	1- year - 78%; 2- year - 66%	2- year - 70%
			$DAEPOCH \rightarrow R$	194	55	1- year - 66%; 2- year - 63%	2- year - 67%
Dunleavy K., 2010 [21]	II (n=33)	DLBCL	SC-EPOCH-RR	208		5- year - 84%	5- year - 68%

Note: m-BACOD – methotrexate, bleomycin, doxorubicin, cyclophosphamide, vincristine, dexamethasone; GM-CSFколонистимулирующий factor; CDE-cyclophosphamide, doxorubicin, etoposide; R-Rituximab; CHOPcyclophosphamide, vincristine, doxorubicin, prednisolone, ACVBP-doxorubicin, cyclophosphamide, vincristine, bleomycin, pnednisolone; EPOCH-etoposide, prednisolone, vincristine, doxorubicin, cuclophosphamide; SC-short course; DA-correlation dose. Table 4 demonstrates the basic schemes for HIV-associated lymphomas treatment, while table 3 presented their efficiency.

Taking into account the risk of infection during and after chemotherapy, particularly in patients with a CD4 lymphocyte count less than 100 cells/mm³, it is important to take preventive steps. All patients with HIV-associated lymphoma, irrespective of CD4 cell count at diagnosis and chemotherapy, should receive Pneumocystis jirall pneumonia prophylaxis, preferably with trimethoprim-sulfamethoxazole (1 tablet twice a day, three times a week during the therapy and up to restore of CD4 cell count to the number of more than 200 cells/ mm³).

Patients with CD4 lymphocytes less than 50-100 cells/mm³ also require prescription of azithromycin 1200 mg per week as the prevention of Mycobeacterium avium. Prescription of valacyclovir for preventing reactivation of herpes simplex virus is valid only in patients having herpes labialis and anogenital herpes in their past history. Patients with HIV-associated lymphoma and hepatitis B viremia require antiviral therapy. However, monotherapy using zidovudine (eg), will increase the probability of a specific mutation of HIV virus, M184V; this may lead to the development of resistance to antiretroviral drugs and increase the hematologic toxicity of chemotherapy. Patients with mucosal infections caused by Candida, should not receive chemotherapy concurrently with azoles.

The role of antiretroviral therapy during chemotherapy in patients with HIV-associated lymphoma

The risks and benefits of continuing ARV therapy during chemotherapy of aggressive lymphomas are contradictory. A lot of researchers are concerned about the fact that uncontrolled HIV replication during chemotherapy will lead to a immune function deterioration, and the continuation of antiretroviral therapy during chemotherapy and immune resumption mat prevent the development of infectious complications, especially in patients with low number of CD4. However, physicians should be ready for the potential pharmacokinetic interactions between ARV and chemotherapeutic medicines, especially first-generation antiretroviral drugs (zidovudine, stavudine, didanostine, and protease inhibitors).

Based on the result of the research of the integration of the firstgeneration antiretroviral drugs and cytostatic drugs, some authors recommend suspend antiretroviral therapy during chemotherapy. Several researches are concerned about their pharmacokinetic and pharmacodynamic interaction that can reduce the required concentration of cytostatic and increase the toxicity of chemotherapeutic treatment [52]. Wilson *et al.*, and Phenix demonstrated in their studies that some classes of first generation antiretroviral drugs decelerate apoptosis of lymphoid cells and facilitate an increased risk of new HIV mutations [41,42].

Nowadays, a new generation of antiretroviral drugs, such as tenofovir and emtricitabine-raltegravir, are widely used; they are well tolerated, do not cumulate side effects of chemotherapeutic treatment of lymphomas and do not affect on apoptosis of lymphocytes. Besides, in terms of acute opportunistic infections, 4-week delay in ARV therapy was associated with a significant increase of the risk of AIDS progression or death [54]. Patients with HIV-associated lymphoma usually have concominant opportunistic infections; average 7-week delay of ARV therapy during chemotherapy may have negative impact on general prognosis. At acute opportunistic infections, 4-week delay of ARV therapy was associated with a significant increase of AIDS progression risk or death. However, it is worth remembering that patients with HIV-associated lymphoma may be needed 4-6 cycles of chemotherapy; this may extend interruption of antiretroviral therapy and have negative impact on the patient survival in general. Bateganya and Mwanda proved in their study that there is a clear survival benefit of concominant prescription of ARV therapy and chemotherapy for the patients with HIV-associated lymphoma [4,38].

Clinical case

Patient A., 43 years old, complained on general weakness, aching stomach pain, heartburn, weight loss by 20 kg a year.

First, on 07 September 2012, the antibodies (Abs) to HIV were detected during the examination by clinical and epidemiological indications (weight loss, chronic active hepatitis C and injecting drugs consumer in past history).

From past history: has been ill for last year; in July 2011 was diagnosed with a stomach ulcer; recurrently held antiulcer therapy in outpatient and inpatient settings, had no improvement. EDG with biopsies has been performed 4 times. During one of the examinations (February 2012) esophageal candidiasis was detected. However, the suspicious for HIV infection or stomach cancer early diagnosis did not take place.

During the examination of **EDG** on 31 August 2012 a tumor formation on all the walls of the antrum was detected; it was deforming the stomach, stiffness, contact bleeding, partly with a touch of fibrin. These changes apply to the pylorus and the duodental cap. The pylorus is not identified, looks like tuberous mass.

The results of histopathological examination #4327-40, 06 September 2012. The material contains fragments of pyoinflammatory granulation tissue and necrotic detritus. Only the presence of ulcerative process can be reliably judged. The control after anti-ulcer therapy is recommended; repeated biopsy to obtain intact tissue.

On 13 September 2012 the patient goes to AIDS department of Gromashevskiy L.V. Institute of Epidemiology and Infectious Diseases.

The results of the additional examinations are the following: CD4 - 8.7%= 147 cells/mm³; viral load of HIV - 1325 RNA cop/ml.

It was decided to lead a re-consultation in a specialized laboratory about histological specimens obtained by biopsy on 31 August 2012

The results of histological and immunohistochemical study #12CSD6049, 02 October 2012

The smooth muscular tissue is determined in the specimen (stomach muscular tissue) with a dense infiltration of large lymphocyte cells containing insignificant number of small lymphocytes. The nuclei of the tumor cells are vesicular and contains from 2 to 3 basophilic nuclei. There are a lot of pieces of mitosis and apoptosis in the tumor.

The morphological imaging mostly corresponds to the large-cell lymphoma. According to the immunohistochemical results, the tumor cells are positive for CD20, negative for CD3, CD30 and general cytokeratins. Also, the tumor cells are positive for CD10 and negative on BCL6 and MUM-1, which indicates about their origin from germinative centre. Conclusion: diffuse large B-cell stomach lymphoma, centroblastic variant with cell phenotype of germinative (embryonic) centre. Further treatment and observation is co-held with a hematologist. Further examination is conducted.

According to PET/CT, metabolically active and structural changes in the lower third of the stomach and bone-destructive changes were not detected. (Fig.1).

Figure 1. The results of PET / CT in the diagnosis of gastric lymphoma in a patient A

Analysis data of peripheral blood in the table

Erythrocytes	Hemoglobin	MCV	MCHC	Platelets	Leucocytes	Abs.	Abs.	ESR
						lymphocytes	neutrophils	
$4,58 \times 10^{12} / 1$	111 g/l	77	31.2	125x10 ⁹ /1	5.8x10 ⁹ /l	1,4x109/l	4.4x109/1	110 mm/hour

Data of chemical blood test in the table

Bilirubin	ALT	AST	urea	creatinine	glucose	albumin
10,4 mmol/l	19 U/l	30 U/l	5,8 mmol/l	7 4	5,5 mmol/l	34 g/l
				mmol/l		

The patient was genotyped by allele carriers of HLA-B*5701.

Basing on the results of the study, the diagnosis is as follows:

HIV infection is in clinical stage IV. HIV-associated non-Hodgkin's diffuse large B-cell stomach lymphoma II E of the germinal centre, T2N0M0. Candidosis of the oral cavity, esophagus.

Replicative form of chronic hepatitis C, RNA HCV +, genotype 3a, 1,2*10*6 copies. Prior to the chemotherapy, the patient was assigned

with antiretroviral therapy (ART): ABC/3TC+LPV/rit (combination of abcavir/lamivudine + combination of lopinavit/ritonavir).

A course of polychemotherapy R-CHOP-21 and two courses of CHOP21 of standard doses along with symptomatic therapy were conducted. Rituximab was canceled, as the number of CD4 lymphocytes with after its prescription decreased to 90 cells/mm and severe cytopenia developed.

After each course of chemotherapy, on day 7, fligrastim 5 mg/kg was injected to increase the absolute number of neutrophils to 1×10^{9} /l and more. For the prevention of Pneumocystis jiroveci pneumonia, trimetorprim-sulfametoksol 960mg three times a week permanently was prescribed. To prevent bacterial infections, the patients took moxifloxacin 400mg twice a day for 10 days after each course of chemotherapy. Considering the risk of thrush of mouth (consequently after chemotherapy), the patient was prescribed with flucanazole 200-400mg daily for 10 days.

After the third course of chemotherapy, the patient was diagnosed with a complete remission, confirmed by the results of PET- CT study, 20 December 2012 (after 3 courses of chemotherapy). Comparing to the previous PET/CT (11 October 2012), the thickness of the stomach walls reduced to 0.75cm at the lesser and greater curvative. In the lower third of the stomach, the wall thickness decreased to 0.85cm. Increased metabolic activity was not observed. Conclusion: B-cell stomach lymphoma after 3 courses of polychemotherapy. PET/CT imaging of the complete and partly morphological regression. (Fig.2).

Figure 2. The results of PET-CT study after 3 cycles of chemotherapy in a patient A.

However, after chemotherapy, the patient happened to have a foulsmelling eructation, vomiting with indigested food, abdominal cramps in epigastric area. According to X-ray examination of the stomach (21 December 2012), a decompensated stenosis of the gastric outlet was At EDG conducting (08 January 2013), the esophagus is installed. passable; the mucosa is pale-pink and edematic; there are multiple linear undrainable erosions of up to 10mm. The stomach poorly straightens up with air; the volume of turbid fluid secretion, mucus and bile is increased fasting. Peristalsis is preserved. Folds are safe and elastic. The cardiac fold is of the second degree. There is a diffuse musocal erythema throughout the stomach. There is a bright speckled erythema and mosaic pattern mucosa. The folds are rough, thickened, twisted, having uneven surface. The pylorus is stenotic, it is impossible to input the apparatus of 9mm size into the duodenum. Conclusion: reflux esophagitis, stenosis of the gastric outlet (Fig.3)

Figure 3. X-ray of the patient's stomach A.

Considering the scar deformity of the lower third of the stomach with decompensated stenosis of the pylorus, limophisis and ascites, it was decided to conduct palliative surgery. After adequate preoperative preparation (correction of water-protein-electrolyte metabolism, inserting nutrient nasointestinal tube), imposing of the bypass front cross-colon gastroenteroanastomosis with Brown's anastomosis (by Welver-Shalimov) and drainage of the absominal cavity were conducted. The postoperative period was relatively satisfactory, with no complications. The positive dynamic after gastric content evacuation along with adequate maintaining therapy was observed starting with the 10th day; this allowed adding fractional oral infant nutrition feeding to parenteral and enteral feeding. The nasogastric decompression tube and nodal skin

sutures were removed on day 14 of the postoparational period. The patient was discharged on the 15^{th} day of hospitalization.

Thus, a lot of patients may be diagnosed with lymphoma by the time of the diagnosis of HIV infection. In order to avoid a diagnostic mistake, the histological material should be sent to specialized histopathological laboratory. Clinical and treatment features of HIV-associated lymphomas as well as the high risk of both infectious and non-infectious complications during chemotherapy require further study for improving the prognosis of the disease in general.

Although many patients with immunodeficiency may have aggressive chemotherapy, it is accompanied by severe side effects and requires wellcoordinated interactions between hematologist-oncologist and HIVinfection specialist along with often involving experts of different profiles into the treatment process.

The team of authors gratefully acknowledges Kravchenko A.V., MD, the Associate Professor of Surgery at the National Medical University named after Bogomolets, for the surgery.

Table 4

Principle schemes of cytostatic maintenance therapy of HIV-associated lymphomas

Author	Type of NHL	Name of scheme	Drugs	Dose	Day of prescription	Preventioan of CNS affection	Maintenance therapy
Sparano J.A.,	DLBCL, BB,	R- EPOCH	Rituximab	375 mg/m ²	Day 1, more than 3 hours	Intrathecal either cytarabine 50mg or	• Filgrastim 5mg/kg on day 6 after EPOCH
2010 [47]	PLE, plasmabl	-21	Etoposide	50 mg/m^2	Days 1-4 (96 hour infusion)	methotrexate 12mg weekly for 4 weeks	• Trimetorprim- sulfametoksol 160-800
	astic lympho		Doxorubicin	10 mg/m^2	Days 1-4 (96 hour infusion)	within one course	mg 3 times a week, permanently
	ma		Vincristine	0.4 mg/m^2	Days 1-4 (96 hour infusion)		• Fluconazole 100 mg daily, permanently
			Prednisolone	60 mg/m^2	Days 1-5		• Ciprofloxacin 500 mg
			Cyclophosphamide	$\begin{array}{c} 1 \text{course} - 187 \\ \text{mg/m}^2 \text{if} \text{CD4} \end{array}$	Day 5 (60 min. infusion)		twice a day, days 8-15 after EPOCH
				count less than 100 cells/m ³ и			
				$375 \text{ mg/m}^2 \text{ if}$			
				CD4 count more			
				than 100 cells/m ³			
Dunleav	DLBCL,	SC-	Rituximab	375 mg/m^2	Days 1 and 5, more	Intrathecal	• Filgrastim 5mg/kg on
у К.,	BB,	EPOCH-		2	than 3 hours	methotrexate 12mg	day 6 after EPOCH
2010 [21]	PLE, plasmabl	RR-21	Etoposide	50 mg/m^2	Days 1-4 (96 hour infusion)	day 1 and day 5 starting with course 3-	Prevention of Pneumocystis
	astic		Doxorubicin	10 mg/m^2	Days 1-4 (96 hour	5	jiroveci pneumonia if
	lympho				infusion)		CD4 count less than
	ma		Vincristine	0.4 mg/m^2	Days 1-4 (96 hour		100 cells/m^3
					infusion)		
			Prednisolone	60 mg/m^2	Days 1-5		
			Cyclophosphamide	750 mg/m^2	Day 5 (60 min.		

					infusion)		
Mounier	DLBCL	ACVBP-	Doxorubicin	75 mg/m^2	Day 1	Intrathecal	• Filgrastim 5mg/kg on
N., 2006		14	Cyclophosphamide	1200 mg/m^2	Day 1	methotrexate 12mg	day 6 after
[37].			Vincristine	2 mg/m^2	Days 1, 5	before each course	chemotherapy until the
			Bleomycin	10 mg	Days 1, 5	циклом (4 injections	number of neutrophils
			Prednisolone	60 mg/m^2	Days 1, 5	max.)	is more than 0.5×10^9 /l
		CHOP-	Doxorubicin	50 mg/m^2	Day 1	Intrathecal	• Trimetorprim-
		21	Cyclophosphamide	750 mg/m^2	Day 1	methotrexate 12mg	sulfametoksol 160-800
			Vincristine	$1,4 \text{ mg/m}^2$	Day 1	before each course (4	mg 3 times a week,
			Prednisolone	60 mg/m^2	Days 1 - 5	injections max.)	permanently
		СНОР	Doxorubicin	25 mg/m^2	Day 1	Intrathecal	
		low-21	Cyclophosphamide	400 mg/m^2	Day 1	methotrexate 12mg	
			Vincristine	$1,4 \text{ mg/m}^2$	Day 1	before each course (4	
			Prednisolone	60 mg/m^2	Days 1 - 5	injections max.)	
		VS-14	Vincristine	2 mg	Day 1	Intrathecal	
			Prednisolone	60 mg/m^2	Days 1 - 5	methotrexate 12mg	
						before each course (4	
						injections max.)	
Spina	DLBCL,		Rituximab	375 mg/m^2	Day 1, more than 3	Intrathecal	• Filgrastim 5mg/kg on
M., 2005	BB,	CDE+/-		2	hours	methotrexate 12mg	day 6 after
[49]	PLE,	R-28	Cyclophosphamide	$185-200 \text{ mg/m}^2$	Days 1-4 (96 hour	before each course or	chemotherapy
	plasmabl			2	infusion)	cytrabine 50mg, days	• Trimetorprim-
	astic		Doxorubicin	$12,5 \text{ mg/m}^2$	Days 1-4 (96 hour	1 and 4 of the first and	sulfametoksol 160-800
	lympho			2	infusion)	second course of	mg 3 times a week,
	ma		Etoposide	60 mg/m^2	Days 1-4 (96 hour	chemotherapy at BL	permanently
					infusion)	or bone marrow	• Fluconazole 100 mg
						attection	daily, permanently

Note: DLBCL - diffuse large B-cell lymphoma; BL – Burkitt's lymphoma; PLE – primary lymphoma of exudates

Bibliography

- 1. Gluzman, D.F. 2001. Diagnostic Oncohaematology. Kiev: DIA
- 2. Alizadeh, A.A, Eisen, M.B., Davis, R.E., et al. 2000. *Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling*. Nature, **403**(6769):503-511.
- 3. Ambinder, R.F. 2001. *Epstein-Barr virus associated lymphoproliferations in the AIDS setting*. Eur. J. Cancer. **37**(10):1209-1216.
- 4. Bateganya, M.H., Stanaway, J., Brentlinger, P.E., et al. 2011. Predictors of Survival After a Diagnosis of Non-Hodgkin Lymphoma in a Resoures-Limited Setting: A Reprospective Study of the Impact of HIV Infection and its Treatment. J. of Acquired Immune Deficiency Syndromes. 56(4):312-319.
- 5. Besson, C., Goubar, A., Gabarre, J., et al. 2001. *Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy*. Blood, **98**(8):2339-2344.
- Biggar, R.J., Jaffe, E.S., Goedert, J.J., et al. 2006. Chaturvedi, A., Pfeiffer, R. & Engels, E.A. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood, 108(12):3786-3791.
- 7. Boue, F., Gabarre, J., Gisselbrecht, C., et al. 2006. *Phase II trial of CHOP plus rituximab in patients with HIV-associated non-Hodgkin's lymphoma*. J. Clin. Oncol., **24**(25):4123-4128.
- Boulanger, E., Gerard, L., Gabarre, J., et al. 2005. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J. Clin. Oncol., 23(19):4372-4380.
- 9. Carbone, A. 2003. *Emerging pathways in the development of AIDS-related lymphomas*. Lancet Oncol., **4**(1):22-29.
- 10. Carbone, A. & Gloghini, A. 2005. *AIDS-related lymphomas: from pathogenesis to pathology*. Br. J. Haematol., **130**(5):662-670.
- 11.Castillo, J.J., Winer, E.S., Stachurski, D., et al. 2010. *Clinical and pathological differences between human immunodeficiency virus-positive and human immunodeficiency virus-negative patients with plasmablastic lymphoma*. Leuk. Lymphoma, **51**(11):2047-2053.
- 12. Chadburn, A., Chiu, A., Lee, J.Y., et al. 2009. Immunophenotypic analysis of AIDS-related diffuse large B-cell lymphoma and clinical implications in patients from AIDS Malignancies Consortium clinical trials 010 and 034. J. Clin. Oncol., 27(30):5039-5048.
- 13.Choi, W.W., Weisenburger, D.D., Greiner, T.C., et al. 2009. A new immunostain algorithm classifies diffuse large B-cell

lymphoma into molecular subtypes with high accuracy. Clin. Cancer. Res., **15**(17):5494-5502.

- 14.Colomo, L., Loong, F., Rives, S., et al. 2004. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am. J. Surg. Pathol., **28**(6):736-747.
- 15.Dalla-Favera, R., Migliazza, A., Chang, C.C., et al. 1999. *Molecular pathogenesis of B cell malignancy: the role of BCL-6.* Curr. Top. Microbiol. Immunol., **246**:257-263.
- 16.Dave, S.S., Fu, K., Wright, G.W., et al. 2006. *Molecular diagnosis* of *Burkitt's lymphoma*. N. Engl. J. Med., **354**(23):2431-2442.
- 17.Davis, R.E., Brown, K.D., Siebenlist, U., et al. 2001. *Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells.* J. Exp. Med., **194**(12):1861-1874.
- 18.Davis, R.E., Ngo, V.N., Lenz, G., et al. 2010. *Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma*. Nature, 463(7277):88-92.
- 19. Dunleavy, K., Little, R.F., Pittaluga, S., et al. 2010. The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma. Blood., **115**(15):3017-3024.
- 20.Dunleavy, K. & Wilson, W.H. 2010. Role of molecular subtype in predicting outcome of AIDS-related diffuse large B-cell lymphoma. J. Clin. Oncol., 8(16):e260–e262.
- 21.Dunleavy, K., Mikhaeel, G., Sehn, L.H., et.al. 2010. The value of positron emission tomography in prognosis and response assessment in non-Hodgkin lymphoma. Leuk. Lymphoma., 51 suppl 1:28-33
- 22.Fan, W., Bubman, D., Chadburn, A., et al. 2005. Distinct subsets of primary effusion lymphoma can be identified based on their cellular gene expression profile and viral association. J. Virol., 79(2):1244-1251.
- 23.Gaidano, G., Capello, D. & Carbone, A. 2000. *The molecular basis of acquired immunodeficiency syndrome-related lymphomagenesis*. Semin. Oncol., **27**(4):431-441.
- 24. Gaidano, G., Capello, D., Cilia, A.M., et al. 1999. Genetic characterization of HHV-8/KSHV-positive primary effusion lymphoma reveals frequent mutations of BCL6: implications for disease pathogenesis and histogenesis. Genes Chromosomes Cancer., 24(1):16-23.
- 25.Gaidano, G., Carbone, A., Pastore, C., et al. 1997. Frequent mutation of the 5' noncoding region of the BCL-6 gene in acquired

immunodeficiency syndrome-related non-Hodgkin's lymphomas. Blood., **89**(10):3755-3762.

- 26.Hans, C.P., Weisenburger, D.D., Greiner, T.C., et al. 2004. *Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray*. Blood., **103**(1):275-282.
- 27.Hummel, M., Bentink, S., Berger, H., et al. 2006. *A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling*. N. Engl. J. Med., **354**(23):2419-2430.
- 28.Kaplan, L.D., Lee, J.Y., Ambinder, R.F., et al. 2005. *Rituximab* does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood., **106**(5):1538-1543.
- 29.Kaplan, L.D., Straus, D.J., Testa, M.A., et al. 1997. Low-dose compared with standard-dose m-BACOD chemotherapy for non-Hodgkin's lymphoma associated with human immunodeficiency virus infection: National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. N. Engl. J. Med., 336(23):1641-1648.
- 30.Klein, U., Gloghini, A., Gaidano, G., et al. 2003. *Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts.* Blood., **101**(10):4115-4121.
- 31.Landgren, O., Goedert, J.J., Rabkin, C.S., et al. 2010. *Circulating* serum free light chains as predictive markers of AIDS-related lymphoma. J. Clin. Oncol., **28**(5):773-779.
- 32.Little, R.F. & Wilson, W.H. 2003. Update on the pathogenesis, diagnosis, and therapy of AIDS-related lymphoma. Curr .Infect. Dis. Rep., 5(2):176-184.
- 33.Lenz, G. & Staudt, L.M. 2010. Aggressive lymphomas. N. Engl. J.
- 34.Lenz, G., Wright, G.W., Emre, N.C., et al. 2008. *Molecular* subtypes of diffuse large *B*-cell lymphoma arise by distinct genetic pathways. Proc. Natl. Acad. Sci .U S A., **105**(36):13520-13525.
- 35.Lenz, G., Davis, R.E., Ngo, V.N., et al. 2008. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science., **319**(5870):1676-1679.
- 36.Little, R.F., Pittaluga, S., Grant, N., et al. 2003. *Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology*. Blood., **101**(12):4653-4659.

- 37. Mounier, N., Spina, M., Gabarre, J., et al. 2006. *AIDS-related non-Hodgkin lymphoma: final analysis of 485 patients treated with risk-adapted intensive chemotherapy*. Blood., **107**(10):3832-3840.
- 38.Mwanda, W. O., Orem, J., Fu, P., et al. 2009. Dose-Modified Oral Chemotherapy in the Treatment of AIDS-Related Non-Hodgkin's Lymphoma in East Africa. J. Clin. Oncol., **27** (21):3480-3488.
- 39.Ngo, V.N., Davis, R.E., Lamy, L., et al. 2006. *A loss-of-function RNA interference screen for molecular targets in cancer*. Nature, **441**(7089):106-110.
- 40. Parekh, S., Polo, J.M., Shaknovich, R., et al. 2007. *BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms*. Blood ., **110**(6):2067-2074.
- 41. Phenix, B.N., Cooper C., Owen, C., et al. 2002. *Modulation of apoptosis by HIV protease inhibitors*. Apoptosis, **7**(4):295-312.
- 42.Phenix, B.N., Lum, J.J., Nie, Z., et al. 2001. Antiapoptotic mechanism of HIV protease inhibitors: preventing mitochondrial transmembrane potential loss. Blood, **98**(4):1078-1085.
- 43. Rabkin, C.S., Yang, Q., Goedert, J.J., et al. 1999. *Chemokine and chemokine receptor gene variants and risk of non- Hodgkin's lymphoma in human immunodeficiency virus-1-infected individuals.* Blood, 93:1838.
- 44. Ratner, L., Lee, J., Tang, S., et al. 2001. *Chemotherapy for human immunodeficiency virus-associated non-Hodgkin's lymphoma in combination with highly active antiretroviral therapy*. J. Clin. Oncol., **19**(8):2171-2178.
- 45. Ribera, J.M., Oriol, A., Morgades, M., et al. 2008. Safety and efficacy of cyclophosphamide, adriamycin, vincristine, prednisone and rituximab in patients with human immunodeficiency virus-associated diffuse large B-cell lymphoma: results of a phase II trial. Br. J. Haematol., **140**(4):411-419.
- 46.Rothe, M., Sarma, V., Dixit, V.M., et al. 1995. *TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40*. Science, **269**(5229):1424-1427.
- 47. Sparano, J.A., Lee, J.Y., Kaplan, L.D., et al. 2010. *Rituximab plus concurrent infusional EPOCH chemotherapy is highly effective in HIV-associated B-cell non-Hodgkin lymphoma*. Blood, **115**(15):3008-3016.
- 48. Sparano, J.A., Lee, S., Chen, M.G., et al. 2004. *Phase II trial of infusional cyclophosphamide, doxorubicin, and etoposide in patients with HIV-associated non-Hodgkin's lymphoma: an Eastern Cooperative Oncology Group Trial (E1494).* J. Clin. Oncol., **22**(8):1491-1500.

- 49. Spina, M., Jaeger, U., Sparano, J.A., et al. 2005. *Rituximab plus infusional cyclophosphamide, doxorubicin, and etoposide in HIV-associated non-Hodgkin lymphoma: pooled results from 3 phase 2 trials.* Blood., **105**(5):1891-1897.
- 50.Swerdlow, S.H., Campo, E., Harris, N.L., et al. 2008. *WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues*. Lyon, France: IARC.
- 51. Thompson, L.D., Fisher, S.I., Chu, W.S., et al. 2004. *HIV-associated Hodgkin lymphoma: a clinicopathologic and immunophenotypic study of 45 cases.* Am. J. Clin. Pathol., **121**(5):727-738.
- 52. Tulpule, A., Sherrod, A., Dharmapala, D., et al. 2002. *Multidrug resistance (MDR-1) expression in AIDS-related lymphomas*. Leuk. Res., **26**(2):121-127.
- 53.Vega, F., Chang, C.C., Medeiros, L.J., et al. 2005. *Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles*. Mod. Pathol., **18**(6):806-815.
- 54.Zolopa, A.R., Andersen, J., Komarow, L., et al. 2009. Early Antiretroviral Therapy Reduces AIDS Progression/Death in Individuals with Acute Opportunistic Infections: A Multicenter Randomized Strategy Trial. PLoS. One, 4 (5): e5575.
- 55. DeVita, V.T., Lawrence, T.S., & Rosenberg, S.A. 2012. Cancer: Principles & Practice of Oncology, 9e